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This paper investigates a simplified five-term chaotic system with exponential quadratic term by detailed theoretical analysis 

as well as dynamic simulation, including some basic dynamical properties, Lyapunov exponent spectra, Poincaré mapping, 

fractal dimension, bifurcation diagram, routes to chaos, and forming mechanisms of its compound structures. The obtained 

results show clearly that the system with two non-hyperbolic equilibria for all a 0 and b  1 deserves a further detailed 

investigation. 
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1. Introduction 

 

Since the discovery of the eminent Lorenz chaotic 

attractor in 1963 [1], the study of chaotic behavior in 

nonlinear systems has attracted great attention due to many 

of possible applications in various fields of science and 

technology. Subsequently, the system has been extensively 

studied with many important results in chaotic dynamics, 

control, and synchronization. In 1999, Chen constructed a 

3-D chaotic system [2] by a simple state feedback to the 

second equation in the Lorenz system that combines 

features of both the Lorenz attractor and the Rössler 

attractor [3]. In 2002, Lü and Chen investigated another a 

new chaotic attractor connecting the Lorenz attractor and 

Chen’s attractor [4]. Later, many Lorenz-like or 

Lorenz-based chaotic systems were proposed and 

investigated. Sprott embarked upon an extensive search for 

autonomous three-dimensional chaotic systems with fewer 

than seven terms in the right hand side of the model 

equations. He considered general three dimensional 

ordinary differential equations with quadratic 

nonlinearities and found by computer simulation 19 simple 

3-D quadratic autonomous chaotic systems with none, one 

equilibrium or two equilibria [5-7]. Moreover, chaotic 

generator research and design studies have become a 

pivotal point for many electronics engineers [8-11]. 

It is noted that some classical 3-D autonomous chaotic 

systems have three particular fixed points: one saddle and 

two unstable saddle-foci [1, 2-4]. The other 3D chaotic 

systems have two unstable saddle-foci [2]. In 2008, Yang 

and Chen found another 3-D chaotic system with three 

fixed points: one saddle and two stable equilibria [12]. In 

2010, an unusual 3D autonomous quadratic Lorenz-like 

chaotic system with only two stable node-foci was 

proposed by Yang, Wei and Chen [13]. In 2011, Wang and 

Chen obtained chaotic attractors with only one stable 

node-focus by adding a simple constant control parameter 

to Sprott E system [5]. Recently, a chaotic system with no 

equilibria was proposed by Wei [14], which was illustrated 

in the case of a period-doubling sequence of bifurcations 

leading to a Feigenbaum-like strange attractor.  

In this paper, a new simple chaotic system with a total 

of five terms on the right hand side, of which there are 

only one quadratic nonlinear term and one exponential 

quadratic nonlinear term, is proposed in three first-order 

autonomous ODEs. Some basic dynamical behaviors are 

further explored by calculating its Lyapunov exponent 

spectra and bifurcation diagrams. Such a new attractor not 

only contributes an addition to the rarely-found five-term 

chaotic systems, but also in some sense is simpler than 

those of existing seven-term or six-term equations. 

Therefore, this would be of mathematical and practical 

interests.  

 

 

2. The simplified five-term system 

 

2.1. Chaotic attractor 

 

The new three-dimensional chaotic system is 

constructed by introducing an exponential quadratic term 

in three-dimensional Lorenz-like equations, which is 

described by 
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where a and b is a real constant, and x, y, z are the state 

variables. 

 

Fig. 1. (a) The chaotic attractor of system (1) for c = 2;  

(b) Waveform of the state variable x(t). 

 

 

Fig. 2. Poincaré mapping on the z=1 section. 

 

 

It is easy to verity the system (1) and all other existing 

three dimensional quadratic systems, such as Lorenz 

system [1], Chen system [2], Lü system [4], are not 

topologically equivalent since the former have an 

exponential quadratic term and two equilibria. Therefore it 

is straightforward to verify that there is no non-singular 

coordinate transforms that can convert such system to 

other existing chaotic system.   

 

2.2. Some basic properties 

 

System (1) has several additional important 

properties: 

(1) Symmetry and invariance 

System (1) is symmetric and invariant under the 

transformation ),,(),,( zyxzyx  , i.e., reflection 

about the z-axis. Also, the z-axis itself is an orbit (an 

invariant manifold), i.e., if 0 yx  at 0tt   then 

0 yx  for all 
0t t  and 1b  . Furthermore, the 

trajectory on the z-axis tends to the origin as -t   , since 

for such a trajectory, 0 yx   and 1z = -b+ . 

Therefore, system (1) has this symmetry and invariance. 

(2) Dissipation and the existence of attractor 

The rate of volume contraction is given by the Lie 

derivative 
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For dynamical system (1), we obtain 

 

1 dV x y z
= -a

V dt x y z

  
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        (3) 

 

which can be solved to yield 

( ) (0) -atV t V e             (4) 

For a >0 , and the dynamical system (1) is 

dissipative with solutions for t  that contract at an 

exponential rate -a  onto an attractor of zero volume that 

may be an equilibrium point, a limit cycle, or a strange 

attractor. 

(3) Equilibria and stability 

The equilibria of system (1) can be found by solving 

the three equations 0 zyx  , which lead to 

( ) 0a y x  , 0xz  , and 
2y-b+e = 0 . 

When a  0 and b  1, there are two 

equilibria:
-( ln , ln ,0)S - b - b  and ( ln , ln ,0)

+
S b b , in 

which S  and S  are symmetrically placed with 

respect to the z-axis. 

Next, linearizing the system about t the equilibrium 

S  yields the following characteristic equation: 

 

  
3 2( ) 2 ln 2 lnf a b b ab b          (6) 

 

These two equilibria S  have the same stability 

characterization. The characteristic roots are 1 a   , 

2 3 lni b b  ， , thus two equilibria are non-hyperbolic. 

Therefore, Hopf bifurcation can not appear at the two 

equilibria. 
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3. Dynamical behavior of the system when 

  a=1 

 

3.1 The Lyapunov exponent spectrum and routes 

   to Chaos 

 

As it is well known, the Lyapunov exponents measure 

the exponential rates of divergence and convergence of 

nearby trajectories in state space, and the Lyapunov 

exponent spectrum provides additional useful information 

about the system. The two largest Lyapunov exponents of 

are shown in Fig. 3. A positive and zero Lyapunov 

exponent indicates chaos, two zero Lyapunov exponents 

indicate a bifurcation, and a zero and a negative Lyapunov 

exponent indicates periodicity (a limit cycle). 

The range of dynamical behaviors is shown by the 

bifurcation diagram in Fig. 4 in which successive values of 

maxx are plotted at each value of b. The band structure 

indicates chaos, which disappears as b increases.  

 

Fig. 3. The Lyapunov exponents (blue, green and red, 

respectively) versus (1,4]b  (Time step: 0.01, Initial  

   condition: (0.5, 0.06, -0.49), Iterations: 800000). 

 

 

Fig. 4. The bifurcation diagram of xmax versus b. 

 

 

Note that system (1) is chaotic over most of the range 

(1,4]b with some windows of periodicity in the range 

(1,2]b , such as 
1 (11.123]W  ， , 

2 [1.2121.232]W  ，  

and 
3 [1.4751.48)W  ， . Different windows exhibit 

different periodic obits. Some of these periodic orbits 

projected onto the xz-plane with different values of c are 

shown in Fig. 5. For application to secure communication, 

one should avoid these windows. 

 
Fig. 5. Periodic orbits of system (1) for different windows 

of periodicity with b (a) b=1.07 (b) b = 1.12 (c) b = 1.22 

(d) b = 1.476. 

 

 

3.2 The Kaplan-Yorke dimension 

 

Whereas the Lyapunov exponent measures the 

average predictability of a dynamical system, the 

dimension of its attractor measures its complexity. A 

fractional dimension can be defined:  





D

j

j

D

KY DD
11 ||

1



           (7) 



Non-existence of Shilnikov chaos in a simple five-term chaotic system with exponential quadratic term         929 

 

 

 

Fig. 6. The Kaplan-Yorke dimension of system (1). 

 

 

The Kaplan-Yorke dimension of system (1) is shown 

in Fig. 6. The dimension of system (1) is larger than 2 for a 

strange attractor, and is 1.0 for a limit cycle. The system 

has no hyperbolic equilibria over the range (1,4]b . 

 

 

4. Non-existence of Shilnikov chaos in 

  system (1) 

 

Let us consider the 3th-order autonomous system 

 

)(xf
dt

dx
 ,               (8) 

where the vector field 33
321 :),,()( RRfffxf T  : 

belongs to the class )1( rC r , Txxxx ),,( 321  is the 

state variable of the system, and Rt  is the time. 

Suppose that )(xf  has at least one equilibrium point P. 

According to the Theorem 1 in [15], we have the 

following result. 

Theorem 4.1 System (1) can not have homoclinic and 

heteroclinic orbits.  

Proof First, let P be an equilibrium point of system (1). 

Then, if there exists a homoclinic orbit  
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Because of btx )(3 , a simple integration from 0t  

to t that 

)()t-(t)( 0303 txbtx  ,           (9) 

 

where 0t  is the initial time such that t  0t ,  thus, using 

(9) one has )()t-(t)( 0303 tbt   , and 33
t

)(lim pt 

 , 

that is, at least one component of )(t  is not bounded.  

Now, let 1P  and 2P  be saddle foci of system (1). If 

there exists a heteroclinic orbit ))(),(),(()( 321 tttt    

Then, from inequality (9), one has 


)(lim 3
t

t . 

Thus, at least one component of )(t is not bounded. 

Therefore, the system (1) has no nomoclinic and 

heteroclinic orbits. From Theorem 4.1, it is important to 

remark that if system (1) is chaotic, then its chaos is not of 

the horseshoe type. 

 

 

5. Conclusions 

 

A new five-term simple chaotic attractor has been 

proposed and characterized by five terms in three 

first-order autonomous ODEs. In terms of algebraic 

representation, such a five-term attractor is of particular 

interest as it is in some sense simpler than other existing 

seven-term or six-term attractors, and displays a novel 

2-scroll chaotic attractor with two non-hyperbolic 

equilibria. Some basic properties of the new system have 

been investigated in terms of chaotic attractors, equilibria, 

eigenvalues of the Jacobian matrices, Lyapunov exponents, 

a dissipative system or an existence of the attractor, 

Poincaré maps, bifurcations. There are additional 

interesting features of this system with the non-existence 

of homoclinic and heteroclinic orbits in terms of control, 

synchronization, circuit implementation and its application 

to secure communications that deserve further study. 
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